Electron Spectroscopy Group at Physics Department, BNL / Peter Johnson, Alexei Fedorov, Tonica Valla/

Angle resolved photoemission:

- ✓ High temperature superconductors /Bi₂Sr₂CaCu₂O₈, Sr₂RuO₄/
- ✓ Low-dimensional conductors /CDW, non-Fermi liquid behavior/
- ✓ Two-dimensional conductors /surface states, 2H-TaSe₂ /
- ✓ Amorphous films /search for the Coulomb gap/

Spin-polarized photoemission:

✓ Micro-Mott detector connected to the Scienta analyzer /surface states in Gd(0001)/

Photoemission Studies of Layered Dichalgonedie 2H-TaSe₂

in the Normal and Charge Density Wave States

Alexei Fedorov

Physics Department, Brookhaven National Laboratory

Supported by the Department of Energy DE-AC02-98CH10886 and DE-FG02-98ER24680

Physics Department, BNL:

Alexei Fedorov

Tonica Valla

Peter Johnson

V.N. Muthukumar Sergei Brazovskii

Physics Department, Boston University:

Jinyu Xue

Laurent Duda

Kevin Smith

Chemistry Department, Rutgers University:

Martha Greenblatt

William McCarrol

NSLS, BNL:

Steven Hulbert

Cornell University:

F.J. DiSalvo

Charge Density Waves

R.E. Peirls, Quantum Theory of Solids (Clarendon, Oxford, 1955); **H. Fröhlich**, Proc. R. Soc. Lond. A <u>223</u>, 296 (1954); **A.W. Overhauser**, Phys. Rev. <u>167</u>, 691 (1968); **S.-K. Chan** and **V. Heine**, J. Phys. F <u>3</u>, 795 (1973)

★ G. Grüner, Density Waves in Solids (Addison-Wesley, Reading, 1994) ★

1. Lets take one-dimensional electron gas...

$$\varepsilon \mathbf{DG} \, \eta^2 k^2 / 2m$$

$$k_F = \frac{N_0 \pi}{2\pi}$$

2. Consider response of an electron gas to a time independent potential:

$$\phi(r) = \sqrt{\phi(q')} e^{iqr} dq'$$

3. Rearrangement of the charge density:

$$\rho^{ind}(\overset{\circ}{q}) = \chi(\overset{\circ}{q})\phi(\overset{\circ}{q})$$

4. $\chi(q)$ -Lindhard response function:

$$\chi(q) = \frac{2dk}{(2\pi)^d} \frac{f_k - f_{k+q}}{\varepsilon_k - \varepsilon_{k+q}}$$

In one dimension:

$$\chi(q) = \frac{-e^2}{\pi \eta v_F} \ln \left| \frac{q + 2k_F}{q - 2k_F} \right|$$

$$\chi(q)$$
 diverges at $q=2k_F$

One-dimensional gas is unstable with respect to the formation of a periodically varying electron charge density

Consequences of charge modulation

/and electron-phonon coupling/

Modification of phonon spectrum /Kohn anomaly or phonon softening at $2k_{\scriptscriptstyle E}/$

Periodic lattice modulation and Pierls transition / opening of a gap at $k_{\scriptscriptstyle E}/$

CDW in a real system: K_{0.3}MoO₄

Quasi-one-dimensional crystal structure

X-ray scattering

T=295K

Resistivity

ARPES spectra at k_E

Angle Rsolved Photoemission

/band structure mapping/

Experiment

$$k_{//} = \sin\Theta \times \sqrt{2 \times m_e \times \eta^2 \times (h v - \Phi - E_{binding})}$$

Data

Excitation Radiation

- photon energy
- polarization
- angle of incidence

Important parameters:

Energy resolution (~20 meV)

Angular resolution (~2°)

Surface State in Cu(011) mapped with ARPES /S. Kevan, PRB **28**, 4822 (1983)/

New Instrumentation

/multi-channel detection in emission angle and kinetic energy/

Experiment

ARPES chamber with Scienta 200-mm analyzer

Performance:

 $\Delta E \sim 10 \text{ meV}$ $\Delta \Theta \sim 0.2^{\circ}$ $3 \times 10^{-11} \text{ Torr}$

2H-TaSe₂: Motivations and Questions

✓ CDW coexists with superconductivity:

$$T_{CDW} \sim 122 \text{ K}$$
; $T_{SC} \sim 0.15 \text{ K}$

- ✓ What drives the CDW transition:
 - "Conventional" Fermi surface nesting or "saddle point" nesting?
- ✓ CDW does not remove the entire Fermi surface: What happens to the excitations at the Fermi energy in a presence of the CDW gap?

2H Crystal structure

/D.E. Moncton, J.D. Axe, and F.J. DiSalvo, PRB **16**, 801(1977)/

Neutron scattering experiment

/superlattice due to the Charge Density Wave/

D.E. Moncton, J.D. Axe, and F.J. DiSalvo, PRL <u>34</u>, 734 (1975)

CDW wave vector: $q_{\delta} = 4\pi \left\{ 1 - \delta(T) \right\} / a \sqrt{3}$

Nesting

A. Fermi surface nesting

J.A. Wilson, PRB <u>15</u>, 5748 (1977)
G. Wexler and A.M. Wooley, J. Phys.
C <u>9</u>, 1185 (1976)
L.F. Mattheiss, PRB <u>8</u>, 3719 (1973)

B. "Saddle point" nesting

T.M. Rice and G.K. Scott, PRL <u>35</u>, 120 (1975)

What is known?

/ARPES studies/

A. "Regular" nesting

Th. Straub et al., PRL <u>82</u>, 4504 (1999)

B. Saddle band \Rightarrow Rice-Scott model

Rong Liu et al., PRL <u>80</u>, 5762 (1998)

 $0.69 \, \text{Å}^{-1} < q_{\delta} < 0.87 \, \text{Å}^{-1} \iff \text{Problems} \implies \text{Saddle band, not a point}$

What does CDW do?

Opens up a gap, $2\Delta \sim 150 \text{ meV}$ /STM data/

Z. Dai et al., PRB 48, 14543 (1993)

Freezes out scattering channels / transport measurements/

V. Vescoli et al., PRL <u>81</u>, 453 (1998)

Band mapping along ΓM

Band mapping along ΓK

How does CDW affect low-energy excitations?

At **45 K** coupling of quasiparticles to the collective mode of some sort manifests itself via changes of both, ARPES **line-shapes**

Electron-phonon coupling

Spectral function:
$$A(k,\omega) \sim \frac{|\operatorname{Im}\Sigma(k,\omega)|}{[h\omega - e_k - \operatorname{Re}\Sigma(k,\omega)]^2 + \operatorname{Im}\Sigma(k,\omega)^2}$$

Dispersion relations

Solid State Physics
Neil W. Ashcroft
N. David Mermin

Spectral functions

Douglas J. Scalapino in Superconductivity, R.D. Parks, editor

What is this collective mode?

/a few clues from dispersion relations/

Is 2H-TaSe₂ similar to the HTSC?

/of course not, however.../

Dispersions relations in underdoped (T_C =80 K) Bi₂Sr₂CaCu₂O₈ along (0,0) to (π , π) /gap node/

A. Normal State, T=120 K

B. Superconducting state, T=45 K

Neutron scattering from Magnetic excitations in Bi₂Sr₂CaCu₂O₈

/H.F. Fomg et al., Nature 398, 588 (1999)/

What will we see in ARPES?

Preliminary results on underdoped (Tc=69 K) and overdoped (Tc=51 K) Bi₂Sr₂CaCu₂O₈ samples

Optimally doped BISCO (T_C =91K) /spectra at different temperatures/

Spectra taken above T_c or at high binding energies do not exhibit temperature broadening P. W. Anderson: spin-charge separation as a source of "quantum protection" in HTSC /Science 288, 480 (2000)/

Broadening due to the impurity scattering /LaShell et. al., PRB 61, 2371 (2000)/

Future measurements

CDW in transition metal dichalcogenides as a model of stripe ordering in high critical temperature superconductors?

2H-NbSe₂ /superconductor at ~7K, no lock-in CDW state/

2H-TaSe $_2$ with defects /suppression of lock-in CDW transition, T $_c$ rises up to \sim 4K/